Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(2): e0278623, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38179917

RESUMEN

Phosphorus, a vital macronutrient, often limits primary productivity in marine environments. Marine Synechococcus strains, including WH8102, rely on high-affinity phosphate-binding proteins (PstS) to scavenge inorganic phosphate in oligotrophic oceans. However, WH8102 possesses three distinct PstS homologs whose substrate specificity and ecological roles are unclear. The three PstS homologs were heterologously expressed and purified to investigate their substrate specificity and binding kinetics. Our study revealed that all three PstS homologs exhibited a high degree of specificity for phosphate but differed in phosphate binding affinities. Notably, PstS1b displayed nearly 10-fold higher binding affinity (KD = 0.44 µM) compared to PstS1a (KD = 3.3 µM) and PstS2 (KD = 4.3 µM). Structural modeling suggested a single amino acid variation in the binding pocket of PstS1b (threonine instead of serine in PstS1a and PstS2) likely contributed to its higher Pi affinity. Genome context data, together with the protein biophysical data, suggest distinct ecological roles for the three PstS homologs. We propose that PstS1b may be involved in scavenging inorganic phosphorus in oligotrophic conditions and that PstS1a may be involved in transporting recycled phosphate derived from organic phosphate cleavage. The role of PstS2 is less clear, but it may be involved in phosphate uptake when environmental phosphate concentrations are transiently higher. The conservation of three distinct PstS homologs in Synechococcus clade III strains likely reflects distinct adaptations for P acquisition under varying oligotrophic conditions.IMPORTANCEPhosphorus is an essential macronutrient that plays a key role in marine primary productivity and biogeochemistry. However, intense competition for bioavailable phosphorus in the marine environment limits growth and productivity of ecologically important cyanobacteria. In oligotrophic oceans, marine Synechococcus strains, like WH8102, utilize high-affinity phosphate-binding proteins (PstS) to scavenge inorganic phosphate. However, WH8102 possesses three distinct PstS homologs, with unclear substrate specificity and ecological roles, creating a knowledge gap in understanding phosphorus acquisition mechanisms in picocyanobacteria. Through genomic, functional, biophysical, and structural analysis, our study unravels the ecological functions of these homologs. Our findings enhance our understanding of cyanobacterial nutritional uptake strategies and shed light on the crucial role of these conserved nutrient uptake systems in adaptation to specific niches, which ultimately underpins the success of marine Synechococcus across a diverse array of marine ecosystems.


Asunto(s)
Synechococcus , Fósforo/metabolismo , Especificidad por Sustrato , Ecosistema , Fosfatos/metabolismo , Proteínas de Unión a Fosfato/metabolismo
2.
Nat Microbiol ; 8(11): 1995-2005, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37814070

RESUMEN

Concerns exist that widespread use of antiseptic or disinfectant biocides could contribute to the emergence and spread of multidrug-resistant bacteria. To investigate this, we performed transposon-directed insertion-site sequencing (TraDIS) on the multidrug-resistant pathogen, Acinetobacter baumannii, exposed to a panel of ten structurally diverse and clinically relevant biocides. Multiple gene targets encoding cell envelope or cytoplasmic proteins involved in processes including fatty acid biogenesis, multidrug efflux, the tricarboxylic acid cycle, cell respiration and cell division, were identified to have effects on bacterial fitness upon biocide exposure, suggesting that these compounds may have intracellular targets in addition to their known effects on the cell envelope. As cell respiration genes are required for A. baumannii fitness in biocides, we confirmed that sub-inhibitory concentrations of the biocides that dissipate membrane potential can promote A. baumannii tolerance to antibiotics that act intracellularly. Our results support the concern that residual biocides might promote antibiotic resistance in pathogenic bacteria.


Asunto(s)
Acinetobacter baumannii , Desinfectantes , Antibacterianos/farmacología , Desinfectantes/farmacología , Farmacorresistencia Bacteriana , Bacterias
3.
Nucleic Acids Res ; 51(12): 6101-6119, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37158230

RESUMEN

Coordination of bacterial stress response mechanisms is critical for long-term survival in harsh environments for successful host infection. The general and specific stress responses of well-studied Gram-negative pathogens like Escherichia coli are controlled by alternative sigma factors, archetypically RpoS. The deadly hospital pathogen Acinetobacter baumannii is notoriously resistant to environmental stresses, yet it lacks RpoS, and the molecular mechanisms driving this incredible stress tolerance remain poorly defined. Here, using functional genomics, we identified the transcriptional regulator DksA as a master regulator for broad stress protection and virulence in A. baumannii. Transcriptomics, phenomics and in vivo animal studies revealed that DksA controls ribosomal protein expression, metabolism, mutation rates, desiccation, antibiotic resistance, and host colonization in a niche-specific manner. Phylogenetically, DksA was highly conserved and well-distributed across Gammaproteobacteria, with 96.6% containing DksA, spanning 88 families. This study lays the groundwork for understanding DksA as a major regulator of general stress response and virulence in this important pathogen.


Asunto(s)
Acinetobacter baumannii , Proteínas de Escherichia coli , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Acinetobacter baumannii/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Factor sigma/genética , Factor sigma/metabolismo , Regulación Bacteriana de la Expresión Génica
4.
IUCrJ ; 10(Pt 4): 420-429, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199504

RESUMEN

The utility of X-ray crystal structures determined under ambient-temperature conditions is becoming increasingly recognized. Such experiments can allow protein dynamics to be characterized and are particularly well suited to challenging protein targets that may form fragile crystals that are difficult to cryo-cool. Room-temperature data collection also enables time-resolved experiments. In contrast to the high-throughput highly automated pipelines for determination of structures at cryogenic temperatures widely available at synchrotron beamlines, room-temperature methodology is less mature. Here, the current status of the fully automated ambient-temperature beamline VMXi at Diamond Light Source is described, and a highly efficient pipeline from protein sample to final multi-crystal data analysis and structure determination is shown. The capability of the pipeline is illustrated using a range of user case studies representing different challenges, and from high and lower symmetry space groups and varied crystal sizes. It is also demonstrated that very rapid structure determination from crystals in situ within crystallization plates is now routine with minimal user intervention.


Asunto(s)
Proteínas , Sincrotrones , Cristalografía por Rayos X , Temperatura , Proteínas/química , Transición de Fase
5.
ISME J ; 17(7): 1040-1051, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37087502

RESUMEN

Despite being fundamental to multiple biological processes, phosphorus (P) availability in marine environments is often growth-limiting, with generally low surface concentrations. Picocyanobacteria strains encode a putative ABC-type phosphite/phosphate/phosphonate transporter, phnDCE, thought to provide access to an alternative phosphorus pool. This, however, is paradoxical given most picocyanobacterial strains lack known phosphite degradation or carbon-phosphate lyase pathway to utilise alternate phosphorus pools. To understand the function of the PhnDCE transport system and its ecological consequences, we characterised the PhnD1 binding proteins from four distinct marine Synechococcus isolates (CC9311, CC9605, MITS9220, and WH8102). We show the Synechococcus PhnD1 proteins selectively bind phosphorus compounds with a stronger affinity for phosphite than for phosphate or methyl phosphonate. However, based on our comprehensive ligand screening and growth experiments showing Synechococcus strains WH8102 and MITS9220 cannot utilise phosphite or methylphosphonate as a sole phosphorus source, we hypothesise that the picocyanobacterial PhnDCE transporter is a constitutively expressed, medium-affinity phosphate transporter, and the measured affinity of PhnD1 to phosphite or methyl phosphonate is fortuitous. Our MITS9220_PhnD1 structure explains the comparatively lower affinity of picocyanobacterial PhnD1 for phosphate, resulting from a more limited H-bond network. We propose two possible physiological roles for PhnD1. First, it could function in phospholipid recycling, working together with the predicted phospholipase, TesA, and alkaline phosphatase. Second, by having multiple transporters for P (PhnDCE and Pst), picocyanobacteria could balance the need for rapid transport during transient episodes of higher P availability in the environment, with the need for efficient P utilisation in typical phosphate-deplete conditions.


Asunto(s)
Organofosfonatos , Fosfitos , Synechococcus , Fósforo/metabolismo , Proteínas de Transporte de Fosfato , Fosfitos/metabolismo , Synechococcus/metabolismo , Fosfatos/metabolismo , Proteínas de Transporte de Membrana
6.
Environ Microbiol ; 24(12): 6071-6085, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36054310

RESUMEN

Osmotic stress, caused by high or fluctuating salt concentrations, is a crucial abiotic factor affecting microbial growth in aquatic habitats. Many organisms utilize common responses to osmotic stress, generally requiring active extrusion of toxic inorganic ions and accumulation of compatible solutes to protect cellular machinery. We heterologously expressed and purified predicted osmoprotectant, proline/glycine betaine-binding proteins (ProX) from two phylogenetically distinct Synechococcus spp. MITS9220 and WH8102. Homologues of this protein are conserved only among Prochlorococcus LLIV and Synechococcus clade I, III and CRD1 strains. Our biophysical characterization show Synechococcus ProX exists as a dimer, with specificity solely for glycine betaine but not to other osmoprotectants tested. We discovered that MITS9220_ProX has a 10-fold higher affinity to glycine betaine than WH8102_ProX, which is further elevated (24-fold) in high salt conditions. The stronger affinity and effect of ionic strength on MITS9220_ProX glycine betaine binding but not on WH8102_ProX alludes to a novel regulatory mechanism, providing critical functional insights into the phylogenetic divergence of picocyanobacterial ProX proteins that may be necessary for their ecological success.


Asunto(s)
Betaína , Synechococcus , Betaína/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Ecotipo , Filogenia , Glicina/metabolismo
7.
Sci Rep ; 12(1): 4805, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314715

RESUMEN

Paradigms of metabolic strategies employed by photoautotrophic marine picocyanobacteria have been challenged in recent years. Based on genomic annotations, picocyanobacteria are predicted to assimilate organic nutrients via ATP-binding cassette importers, a process mediated by substrate-binding proteins. We report the functional characterisation of a modified sugar-binding protein, MsBP, from a marine Synechococcus strain, MITS9220. Ligand screening of MsBP shows a specific affinity for zinc (KD ~ 1.3 µM) and a preference for phosphate-modified sugars, such as fructose-1,6-biphosphate, in the presence of zinc (KD ~ 5.8 µM). Our crystal structures of apo MsBP (no zinc or substrate-bound) and Zn-MsBP (with zinc-bound) show that the presence of zinc induces structural differences, leading to a partially-closed substrate-binding cavity. The Zn-MsBP structure also sequesters several sulphate ions from the crystallisation condition, including two in the binding cleft, appropriately placed to mimic the orientation of adducts of a biphosphate hexose. Combined with a previously unseen positively charged binding cleft in our two structures and our binding affinity data, these observations highlight novel molecular variations on the sugar-binding SBP scaffold. Our findings lend further evidence to a proposed sugar acquisition mechanism in picocyanobacteria alluding to a mixotrophic strategy within these ubiquitous photosynthetic bacteria.


Asunto(s)
Synechococcus , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Receptores de Superficie Celular/metabolismo , Azúcares/metabolismo , Synechococcus/metabolismo , Zinc/metabolismo
8.
Biochem Soc Trans ; 49(6): 2465-2481, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34882230

RESUMEN

Marine cyanobacteria are key primary producers, contributing significantly to the microbial food web and biogeochemical cycles by releasing and importing many essential nutrients cycled through the environment. A subgroup of these, the picocyanobacteria (Synechococcus and Prochlorococcus), have colonised almost all marine ecosystems, covering a range of distinct light and temperature conditions, and nutrient profiles. The intra-clade diversities displayed by this monophyletic branch of cyanobacteria is indicative of their success across a broad range of environments. Part of this diversity is due to nutrient acquisition mechanisms, such as the use of high-affinity ATP-binding cassette (ABC) transporters to competitively acquire nutrients, particularly in oligotrophic (nutrient scarce) marine environments. The specificity of nutrient uptake in ABC transporters is primarily determined by the peripheral substrate-binding protein (SBP), a receptor protein that mediates ligand recognition and initiates translocation into the cell. The recent availability of large numbers of sequenced picocyanobacterial genomes indicates both Synechococcus and Prochlorococcus apportion >50% of their transport capacity to ABC transport systems. However, the low degree of sequence homology among the SBP family limits the reliability of functional assignments using sequence annotation and prediction tools. This review highlights the use of known SBP structural representatives for the uptake of key nutrient classes by cyanobacteria to compare with predicted SBP functionalities within sequenced marine picocyanobacteria genomes. This review shows the broad range of conserved biochemical functions of picocyanobacteria and the range of novel and hypothetical ABC transport systems that require further functional characterisation.


Asunto(s)
Proteínas Portadoras/metabolismo , Cianobacterias/metabolismo , Nutrientes/metabolismo , Agua de Mar/microbiología , Proteínas Portadoras/química , Metales/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Conformación Proteica , Oligoelementos/metabolismo
9.
PLoS One ; 13(1): e0191610, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29352301

RESUMEN

With new strains of Acinetobacter baumannii undergoing genomic analysis, it has been possible to define regions of genomic plasticity (RGPs), encoding specific adaptive elements. For a selected RGP from a community-derived isolate of A. baumannii, we outline sequences compatible with biosynthetic machinery of surface polysaccharides, specifically enzymes utilized in the dehydration and conversion of UDP-N-acetyl-D-glucosamine (UDP-D-GlcNAc). We have determined the crystal structure of one of these, the epimerase Ab-WbjB. This dehydratase belongs to the 'extended' short-chain dehydrogenase/reductase (SDR) family, related in fold to previously characterised enzymes CapE and FlaA1. Our 2.65Å resolution structure of Ab-WbjB shows a hexamer, organised into a trimer of chain pairs, with coenzyme NADP+ occupying each chain. Specific active-site interactions between each coenzyme and a lysine quaternary group of a neighbouring chain interconnect adjacent dimers, so stabilising the hexameric form. We show UDP-GlcNAc to be a specific substrate for Ab-WbjB, with binding evident by ITC (Ka = 0.23 µmol-1). The sequence of Ab-WbjB shows variation from the consensus active-site motifs of many SDR enzymes, demonstrating a likely catalytic role for a specific threonine sidechain (as an alternative to tyrosine) in the canonical active site chemistry of these epimerases.


Asunto(s)
Acinetobacter baumannii/enzimología , Proteínas Bacterianas/química , Carbohidrato Epimerasas/química , Acinetobacter baumannii/genética , Acinetobacter baumannii/aislamiento & purificación , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Polisacáridos Bacterianos/biosíntesis , Conformación Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína , Homología de Secuencia de Aminoácido , Electricidad Estática , Homología Estructural de Proteína
10.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 10): 1318-23, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25286932

RESUMEN

Over 15% of the genome of an Australian clinical isolate of Acinetobacter baumannii occurs within genomic islands. An uncharacterized protein encoded within one island feature common to this and other International Clone II strains has been studied by X-ray crystallography. The 2.4 Šresolution structure of SDR-WM99c reveals it to be a new member of the classical short-chain dehydrogenase/reductase (SDR) superfamily. The enzyme contains a nucleotide-binding domain and, like many other SDRs, is tetrameric in form. The active site contains a catalytic tetrad (Asn117, Ser146, Tyr159 and Lys163) and water molecules occupying the presumed NADP cofactor-binding pocket. An adjacent cleft is capped by a relatively mobile helical subdomain, which is well positioned to control substrate access.


Asunto(s)
Acinetobacter baumannii/enzimología , Proteínas Bacterianas/química , Ácido Graso Sintasas/química , NADH NADPH Oxidorreductasas/química , Acinetobacter baumannii/genética , Secuencia de Aminoácidos , Apoenzimas/química , Dominio Catalítico , Cristalografía por Rayos X , Genoma Bacteriano , Islas Genómicas , Modelos Moleculares , Datos de Secuencia Molecular
11.
PLoS One ; 8(3): e58628, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23527001

RESUMEN

Many sequenced strains of Acinetobacter baumannii are established nosocomial pathogens capable of resistance to multiple antimicrobials. Community-acquired A. baumannii in contrast, comprise a minor proportion of all A. baumannii infections and are highly susceptible to antimicrobial treatment. However, these infections also present acute clinical manifestations associated with high reported rates of mortality. We report the complete 3.70 Mbp genome of A. baumannii D1279779, previously isolated from the bacteraemic infection of an Indigenous Australian; this strain represents the first community-acquired A. baumannii to be sequenced. Comparative analysis of currently published A. baumannii genomes identified twenty-four accessory gene clusters present in D1279779. These accessory elements were predicted to encode a range of functions including polysaccharide biosynthesis, type I DNA restriction-modification, and the metabolism of novel carbonaceous and nitrogenous compounds. Conversely, twenty genomic regions present in previously sequenced A. baumannii strains were absent in D1279779, including gene clusters involved in the catabolism of 4-hydroxybenzoate and glucarate, and the A. baumannii antibiotic resistance island, known to bestow resistance to multiple antimicrobials in nosocomial strains. Phenomic analysis utilising the Biolog Phenotype Microarray system indicated that A. baumannii D1279779 can utilise a broader range of carbon and nitrogen sources than international clone I and clone II nosocomial isolates. However, D1279779 was more sensitive to antimicrobial compounds, particularly beta-lactams, tetracyclines and sulphonamides. The combined genomic and phenomic analyses have provided insight into the features distinguishing A. baumannii isolated from community-acquired and nosocomial infections.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/genética , Genoma Bacteriano , Infecciones por Acinetobacter/tratamiento farmacológico , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/aislamiento & purificación , Mapeo Cromosómico , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Infecciones Comunitarias Adquiridas/microbiología , Elementos Transponibles de ADN/genética , ADN Bacteriano/genética , Farmacorresistencia Bacteriana/genética , Humanos , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , Antro Pilórico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...